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Fluctuation effects and multiscaling of the reaction- 
diffusion front for A + B -+ 0 

Martin Howardt and John Cardytt 
t Depanment of Physics, Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP. UK 

All Souls College, Oxford, LJK 

Received 11 January 1995 

Abstract. We consider the propenies of d e  diffusion-conuolled reaction A + B + 0 in the 
steady state, where fixed currents of A and B panicles are maintained at opposite edges of 
the system. Using renormalization-group methods, we explicitly calculate the asymptotic forms 
of the reaction front and particle densities as expansions in ( J D - L I ~ l d + ' ) - L ,  where I are the 
(equal) applied CUITrnts, and D the (equal) diffusion constants. For the asymptotic densities of 
the minorily species, we find. in addition to the expected exponential decay, fluctuation-induced 
power-law tails, which, f o r d  < 2, have a universal form AI.@. where ~r = 5 + O(e), and 
e = 2 - d. A related expansion is derived for the reaction rate profile R. where we find the 
asymptotic power law R - BIXI- ' -~ .  Ford =- 2. we find similar power laws with ~r = d + 3, 
but with non-universal coefficients. Logarithmic conenions occur in d = 2. These results imply 
that, in the time-dependent case, with segregated initial conditions. the moments J' IxlqR(x, 1) dr 
fail  to^ satisfy simple scaling for q > ~r + 1. F@ally, it is shown that the fluctuation-induced 
wandering of the position of the reaction front Centre may be neglened for I q e  enough systems. 

1. Introduction 

Since the initial work of GBlfi and RBcz [I], there has been considerable interest in the 
kinetics of one and two-species annihilation, A + A -+ 0, and A + B -+ 0 [1-20, 26-30]. 
Most analytic and numerical studies have concentrated on the case of either homogeneous 
initial conditions, or initially entirely segegated reactants. Ben-Naim and Redner [9] were 
the first to study the case of a steady-state reaction interface, maintained by fixed particle 
currents imposed at opposite edges of the system. Their equations for the particle densities 
a(s, t) and b(z ,  t )  were 

aa 

at 
- = DV2a -hub 

ab - = DV2b -hub 
at  

with diffusion constant D ,  reaction rate constant~h, and with the boundary conditions 

J=-Da,al,=-L O=-Da,bl,,-L , O=-Da,alx,L - J=-Da,bl,=L. 

(3) 

These equations are asymptotically soluble analytically, giving 
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where 8 ( x )  is the Heaviside step function. The relations w - J-1/33 where w is the 
reaction front width, and c - J2l3, where c is the particle concentration in the reaction 
zone, are also derived in [9]. However, implicit in their formulation is the 'mean-field'-likc 
assumption, (ab) o( (a)(b), which will no longer be adequate below the critical dimension, 
due to fluctuations. Come11 and Droz [U] have given an argument for the upper critical 
dimension of the system (leading to d, = 2), as well as performing numerical simulations. 
On the basis of these, and mean-field analysis, they have proposed scaling forms for a,  b 
and the reaction front R, which are postulated to be valid both above and below the critical 
dimension in the scaling limit w + CO (or J 
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0): 
wJ wJ 

a = - A  D (i) b = -B  D (:) 
In other words, the profiles are characterized by a single length scale w, which itself is 
suggested in [15] to vary as w - .I-'/' in d = 1, and w - for d > 2 in the 
scaling limit. Cardy and Lee [29] have given RG arguments which support this conclusion. 
However, we defer further discussion, especially with regard to the presence of multiscaling, 
until section 6. 

In this paper, we present the results of the k t  renormalization-group calculation 
for the asymptotic properties of the densities and reaction front in the steady state, 
which systematically takes into account the effect of fluctuations in the stochastic particle 
dynamics. Previously, the RG had been used to study the latetime behaviour of reactions 
with homogeneous initial conditions (see [19] and references therein). Our calculational 
framework will bear considerable similarities with [191. The basic plan is to map the 
microscopic dynamics, in the form of a maSter equation, onto a quantum field theory. This 
theory is then renormalized (for d < 2) by the introduction of a renormalized coupling, 
which is shown to have a stable fixed point of order E .  We then group the Feynman diagrams 
into sets whose sums give a particular order of the renormalized coupling constant. It will be 
demonstrated that this grouping is given by the number of loops. These diagrams may then 
be evaluated (asymptotically) and the Callan-Symanzik solution used, to obtain perturbative 
expansions for the densities and reaction front. Note that for d z 2 no renormalization is 
necessary and the diagrams may be evaluated directly. 

Although the calculation we present is for the steady state, the same RG methods can 
also be applied to the time-dependent situation, with initially entirely separated reactants. 
However, this leads to an analytic calculation of greatly increased complexity, as the 
quantities involved in the calculation (including the Green functions, the response functions, 
and the mean-field reaction front) will acquire additional time dependence. Nevertheless 
we shall argue in section 6 that our results are still valid for the quasistatic time-dependent 
situation, provided we substitute J ,., r-112. 

We now present our results for the asymptotic forms of the densities and reaction front 
profile. It will be shown that at zero loops we find a stretched exponential dependence which 
we include in the following summary, even though we expect its effects to be overwhelmed 
by leading and subleading power-law terms. In addition, for d < 2, we do not rule out 
the possibility of logarithms in higher-order terms summing to give a modification to the 
leading power law given below (which results from the straightforward evaluation of the 
one-loop contributions). So we find asymptotically as 1x1 + CO ford  < 2: 
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where 

for d = 2 

Although these results are for the case of equal diffusion constants; our calculations could 
be repeated for Da # Dg. However, we do not expect that such a modification will make a 
qualitative difference, at least for the case where both diffusion constahts remain non-zero. 
Evidence for this comes from a similar calculation by Lee and Cardy [20] for the same 

~ two-species reaction, but with homogeneous initial conditions. They found that unequal 
diffusion constants only led to modified amplitudes for the densities, whilst leaving the 
density decay exponent unchanged. 

The layout of this paper is as follows. In section 2, the system is defined using a master 
equation, which is then mapped to a second quantized representation, and then to a field 
theory. In section 3, we present two related field theories and derive the form of their Green 
functions. The renormalization of the theory is also addressed. The calculations for the 
densities and reaction front are presented in section 4,  for d < d,. d = dc, and d > d,. 
The separate problem of the fluctuations in the position of the centre of the reaction front 
is presented in section 5. A discussion of these results and comparisons with the available 
data from simulations are given in section 6, where we also argue for the presence of 
multiscaling in the system. 
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2. The model 

We consider a model where particles A and B are moving diffusively on a hypercubic 
lattice, with lattice constant 1. There is some probability of mutual annihilation whenever 
an A and a B particle meet on a lattice site. In addition, particles of type A are added 
at a constant rate to lattice sites on the hypersurface x = -L, and particles of type B are 
similarly added to sites at x = L.  In other words, opposing currents of A and B particles 
are maintained at opposite edges of the system. The two hypersurfaces x = &L mark the 
boundaries of the system beyond which the particles are not permitted to move. The model 
is defined by a master equation for P((n, m).  t ) ,  the probability of particle configuration 
In, m }  occurring at time t .  Here (n.m} = (nl, n2,. . . , nN, ml, mz.. . . , mN), where ni is 
the occupation number of the A particles, and mi the occupation number of the B particles, 
at the ith lattice site. The appropriate master equation is 
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where i is summed over lattice sites, and e is summed over the nearest neighbours of 
i. The first, second, and third lines of the equation describe diffusion of the A and B 
particles, respectively (with equal diffusion constants D), whilst the fourth line describes 
their annihilation within the system (with rate constant A). The final four terms are due to 
the addition of particles A and B at the edges of the system at a rate R ,  corresponding to 
the maintenance of steady-particle currents. 

The master equation can be mapped to a second quantized form, following a standard 
procedure developed by Doi [211 and Peliti 1’221, and as described by Lee 1191. In brief, 
in terms of the creatiodannihilation operators a,  at ,  b and bt which are introduced at each 
lattice site, the time evolution operator for the system is 

H * D  =--E{ ai + (a, -ai) + bi t (be - bi)} - h x ( 1  - ajbf)aibi - R(a1, - 1 + bl - 1). 
i2 ;.e 

(20) 

This can now be mapped onto a path integral, in which a, 2, b and i are replaced by 
continuous c-number fields, with action (up to a constant) 

where a&) and bi(t) are due to the projection state (see [19]), provided that 
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at -L, and 

at +L. Here the sites -L, L are at the edges of the system, with site o being immediately 
outside L or -L. Taking the continuum limit of this action, we arrive at 

S[d,a,6,b, t l  =/(dxdd-'yS_i_dt(2(a, -DV2)a+6(a,  -DV2)b  

-&)ab) - a(r) - b(t)  (24) 

subject to the conditions 
-J  = -'Da,b o = -Da,a 

at +L, and 

J = -Da,a 0 = -Da,b (26) 
at -L. Here y are the coordinates for directions perpendicular to the applied currents. 
These conditions may be made explicit in the action by including a pair of delta functions: 

-ho(l -&)ab - a J 8 ( x  + L) - 6 J 8 ( x  - L)} -a@) - b(t)  ) . (27) 

If we make the substitutions d = 1 + Z and 6 = 1 + 6,  then the action becomes (up to a 
constant) 

S = dxdd-'ydt[Z(a, - DV2)a + &(a, - DV2)b + h&b + h0&b 

+A&ab - Z J S ( x  + L) - 6 J S ( x  - L)]  . (28) 

.I 
If we integrate over the Z and 6 fields, and neglect the Z&ab term, we obtain the classical 
(mean-field) equations 

(ar - DV2)a'+ hoab - J S ( x  + L) = 0 
(at - DV2)b + Aoab - JS(x - L) = 0. 

On the further conditions that no particle annihilation occurs at the edges of the system, and 
that V a  = 0 and V b  = 0 outside, integrating the first equation from -L - E  to -L + E and 
the second from L - E  to L + E in the limit E -+ 0 gives the required boundary conditions. 

AS the diffusion constant exhibits no singular behaviour in the renormalization of the 
theory, it is convenient to absorb it into a rescaling of time, as in 1191. Defining t = Dt ,  
?. = hoD-', and J' = JD-' ,  and introducing the fields @ = ;(U + 6 )  and I) = ;(U - b) ,  
we have 

S = / d r d d - ' y d i [ 2 ~ ( a i - V 2 ) @ + 2 4 ( a i - V 2 ) I ) + 2 ~ ~ ( @ 2 - I ) 2 )  

+h(# -~Q)(@' - $3 - &i[S(x + L) +S(x - L)] 
- j $ [ S ( x  + L) - S(x -L)l]. (31) 

a : ~ ~ - h ( ~ : - ~ ~ ; 2 ) + ~ j [ ~ ( x + L ) + 6 ( x - L ) 1  =o.  (33) 

Consequently, the new classical equations of the steady state are 

a:@c + f J [ s ( x  + L) - S(.X - L)I  = o (32) 
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The appropriate solution for $c is just - ( J / z ) x  (for 1x1 < L), whilst substituting 
#c = (j/Z)lxi + U into the second equation gives asymptotically the Airy equation for 
U, as noted in [9]. Asymptotically one finds 
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where the constant was determined numerically. 
So far the quartic term in the action has been neglected, with the result that the simple 

mean-field results have been recovered. However, we can take into account the non-classical 
term by including Gaussian noise in the equations for # and @, leading to equations which 
are exact. This modification can be derived by replacing the quartic piece in the action by a 
noise variable, integrating over the noise distribution, and demonstrating that this recovers 
the original term. Observing that 

m 

J_m 
dqy e ~ ~ ~ e - ~ ~ / [ 4 % 9 2 - ~ 2 ) 1  e-I$'(4'-$2) (36) 

where qd and qe are complex Gaussian noise variables with an appropriate phase, we see 
that the steady-state equations may be written as 

a,"* + 3 f [ S ( x  + L) - S ( x  - L)]  + q* = 0 

a:# - i(qP - @') + $J[s(x + L )  + S(x - L)] + q4 = 0. 
(37) 
(38) 

Clearly we have lost the simple interpretation of the a and b fields as being the local 
densities of A and B particles, as now each of the above equations includes a (generally) 
complex noise term. Nevertheless, we can still interpret (@) and (#) as being averaged 
densities, which, also satisfy 

a,"(@) + &qx + L )  -qx - L)I = o 
a , 2 ( # ) - h ( # Z - $ z ) + ~ ~ r ~ ( X + L ) + s ( X - L ) ~  =o.  (40) 

(39) 

The second equation will be used later on to relate a perturbation expansion for (4) to one 
for (#' - @'). 

Finally, we give the natural canonical dimensions for the various quantities appearing 
in the action, noting that the coupling becomes dimensionless at the postulated value of the 
critical dimension [15]: 

[F] = k-' [a,  bl = kd [ E ,  61 = ko [I] kZwd [ J ]  = kd+' . (41) 

3. Field-theory formulations 

In what follows it will be convenient to develop two parallel field theories-one given by 
the action already described in (31), and another to be described below, formed by writing 
# = #c + $1 and @ = @= + @ I .  In particular, whilst the second theory is more useful for 
calculations, the cancellation of divergences after renormalization, and the identification of 
leading terms in an expansion in powers of the coupling constant, are easier to see in the 
first theory. 
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3.1. Propagators and vertices 

The propagators for the first of the two theories described above (which we shall call field 
theory I) are (from (31)) 

G 6 ( k ,  i )  = G,+(k, 0 = 2 (42) 
in (k. $space. In (k,  s)-space, where a Laplace transform of time has been performed, we 
have 

(43) 
1 

2(k2 + s) ’ 
The vertices are shown in figure 1, where the @ propagators are represented by full lines, 
and $ propagators by broken lines. 

G$q(k, S) = G$+(k. S) = 

J[&+L)+S(X-LJJ J[G(X+L)-G(X-L)I Figure 1. Vertices for field theory I. 

For field theory II, we split the q5 and $b fields into their classical and non-classical 
components, which leads to a modified action 

s = dr dd-Iy dr{z&(ai - v2 + 2i@,)@1 + z+(ai - v2)@l J 
+fiiw - $by - W C ? h l )  + w2 -,+w: + 2 @ C h  + @? - $2 - 7-$bC$bl - v3) (44) 
where the classical equations have been used to simplify its fa& somewhat. We can now 
substitute for the exact value of $bc = - ( j / Z ) x  and for the functional form of the q5c field 
(from equation (33)) 

@c = (.P/i)1/3f[(ii)’/%]. (45) 
If we also make the rescaling in the action of 

I = ( % j ) l / 3 x  ~ ~i = ( i j ) l / 3 y  i = (i j ) 2 / 3 f  (46) 
then it is transformed to 

S =  d i - d d - l j ; d T ( ~ i ) j ) - q [ 2 ~ ( a j -  e 2 + 2 f ( i ) ) @ ,  +2$(ai-v2)@1 

+ z ~ i / ~ ) 1 / 3 i q ~ ;  - q?) + ~ i q ~  
+(&Z - V)((J7/i)hm 4- 2f(I)@I + 5.h + (i/P)i($b: - @?))I 

.I 
(47) 

(48) 
which is essentially just the classical profile of the reaction front. The form of the 
propagators is now 

where 

h ( i )  = [ f (Ip - $2 

cbL6 = 4(i7)d/3G(i,.?, 5, G‘, i) (49) 

(50) 

where 

[a; - P + 2 f (I)]G(.t, I’, 5, 5’. 7 )  = s(x - i’)s(c - jr’)s(f - i’) 
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and 

in (1, ;)-space, or 

in (2, i ~ ,  ?)-space, where the perpendicular directions are defined to be those perpendicular 
to the applied currents. Unfortunately, the equation for G (50) is too hard to solve exactly, 
as we do not have an analytic form for &. Consequently, we must rely on the approximation 
f ( i )  - il?l, valid at large lil, in order to make the equation tractable. If we also 
Laplace transform time, and Fourier transform to momentum space for spatial dimensions 
perpendicular to the applied currents, then we obtain 

(53) 
In appendix A, we show that for f c 2’ >> 0, this gives 

(54) 
The important point ta notice here is that for i sufficiently close ta i’, the Green function 
only decays as a power law. 

Finally, we note that each occqence of a propagator is associated with a factor of 
(x j )d /3 .  If we also extract a factor of (%j)-(d+2)/3 from each vertex, then we can use the 
vertices shown in figure 2, provided we multiply any given diagram by a factor of 

(? + - 3; + 12 l)G(f, 2’, EL, S) = 8(2 - 2’) . 

~ ~ , ~ ( ? , 2 / ,  El, 9) = ; ( j j ) d / ? ( i  + l; + ~)-t/ze-(:+~~+j)l~l:-~l 

( j ” ) i p d - : ( d + Z )  (55) 
where p is the number of propagators and U is the number of vertices. Again, in figure 2, 

propagators are full lines and + propagators are broken lines. Note the simple form of 
the vertices (h&(m). 

3.2. Renormalization 

The renormalization of the theory proceeds in a similar vein to that described in [19]- 
our field theory differs only in the nature of the boundary conditions. Again the only 
renormalization required is coupling constant renormalization, as the set of vertices for 
field theory I allows no diagrams which dress the propagator. Hence we have no field 
renormalization and the bare propagators are the full propagators for the theory. 
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Figure 3. The sum of diagrams contributing to the primitively divergent vertex function A(k, I). 

3.2.1. Renormalization of the coupling. The temporally extended vertex function for 
A + B + 0 is given by the sum of diagrams shown in figure 3. This sum may be 
calculated exactly, as was done in [ZO] (remembering extra factors of two resulting from 
the presence of two different types of propagator): 

where Bz = 2 / ( 8 ~ 1 ) ~ / ~ ,  and .E = 2 - d .  However, as we are now in the time-independent 
state, we take s = 0, leading to 

,i 
1 + $ h B z r ( ~ / 2 ) 2 ' / ~ k - '  

h(k) = (57) 

The vertex function can now be used to define the renormalized coupling, with k = K as 
the normalization point (differing from [19]). So we have 

gR = K - ' h ( k ) [ k = x  go = K-'X (58) 
for the dimensionless renormalized Bnd bare couplings, respectively. The p function is 
defined by 

(59) 

g; = { Z - ~ / ~ B ~ ~ ( E / ~ ) ] - ~ .  (60) 

a 
p ( g R )  K - g R  -6gR + $ g ~ ~ 2 r ( E / 2 ) 2 " z  

a K  

and we have a fixed point p(&) = 0 when 

The fixed point is~of order E .  Finally, the expansion of go in powers g R  remains, as in 1191: 

3.2.2. CallmSymanzik equation. We now write down the renormalization-group equation 
for ( $ 1 ) ~  (the renormalized value of (@I)), expressing its lack of dependence on the 
normalization scale: 

In addition, dimensional analysis implies 
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Eliminating the terms involving K ,  we have 
. a  

a 1  
( X &  - (d+ 1)J- ( @ I ) R ( X , g R , K ,  f) = 0. 

This can be solved by the method of characteristics, with solution 

( h ) R ( X ,  gR ,  K ,  1) = @ X ) - d ( h ) R ( K - ’ ,  i R ( K - ’ ) ,  K ,  ?@-I)) 

and associated characteristics 
a i R  
ax 

aJ 
ax 

1- = B G R )  g R ( X )  = gR 
- 

(d- i -1);  j ( x ) = . ? .  x- = - 

These equations have the exact solutions: 
x d+l - 

j(d) = (7) J 
X 

-1  

where in the large-1x1 limit H R  + g;R, 
We can make use of the mechanics developed above by first calculating an expansion in 

powers of go, which can he converted into an expansion in powers of g R  via (61). Provided 
that the expansion is non-singular in E ,  we can relate the g.q expansion to an E expansion 
using (65), where for large 1x1 we can take j~ -+ g;l. 

3.2.3. Tree diagrams. At this point we need to identify the leading terms in an expansion 
in powers of go-something which can be done in a very similar fashion to [19], using 
field theory I. For the calculation of (@), tree diagrams are of order g;J”+‘, for integer 
i .  Diagrams with j loops will be of order gLJLJi-j. As the addition of loops makes the 
power of go higher relative to the power of J ,  we see that the number of loops will give 
an indicator of the order of the diagram. 

We are now in a position to develop two treelevel quantities-namely the classical 
density and the classical response function. Diagrammatically. we represent the classical 
densities by wavy lines and the classical response functions by thick lines. The tree-level 
density (@) is given by the sum of all tree diagrams which end with a Gg6 propagator, 
as shown in figure 4(b). This is equivalent to the mean-field equation, as may be seen by 
acting on both sides of the graphical equation by the inverse Green function 2(aj - V2). 
Similarly, acting on the much simpler tree-level diagram for (@) (figure 4(a)) with the 
inverse Green function gives its classicd equation. 

We now define the three response functions for the theory: 

where the superscript ‘1’ indicates that they are defined in field theory I. Their 
diagrammatic sums are shown in figure 5. The first one: ( $ ( x ,  -kL, -s)$(x‘, ki,  s))”) 
is simply the propagator G‘”-, where the superscript ‘2’ indicates that it belongs to 

11.1 * 
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= - + -< + -::: + <'I' + 4 + 

or 
--< 

-= - + < + A.-; r-- ' 
'.-- 

Figure 4. Tree level diagrams for (a)  (@) and (b) (4). 

(b) - = + --c+ =+.., 

Figure 5. Response functions for field theory I: (a) (J.$)(o, (b) (@J)(') and (c)  (4$)(1) 

the second field theory. It is also easy to show that the second response function 
( @ ( x ,  -kL, -s)J(x' ,  k l ,  s))(I) is equivalent to the propagator G")-. To do this. werearrange 

the unrescaled equation for G:+: 

Z(s + k: - a:)GE+(x, x', k s ,  s) = -4x@c(~)G:+(x, x', k s ,  s )  + S(x - x ' )  . 

414 

(71) 
Including a delta-function integration in the first term on the right-hand side, and acting on 
both sides with the inverse Green function, we obtain 

where G i i  is the @ propagator for the first field theory. ~ Iteration now generates 
the appropriate tree-level expansion for @ ( x ,  - k l ,  -s)&x', k l ,  $))('I, and we have 
G"). = (@$)('). The~remaining 'response function (@$)(I) is, as would be expected, 
equivalent in the second field theory to the two-point vertex sandwiched between a @ 
propagator and a $ propagator. 

41 s+ 

4. Density and reaction front calculations 

We first note that we cannot draw diagrams which terminate with a $1 propagator in field 
theory 11. Consequently, we conclude that ($1) = 0, and hence that (+) = $c. This also 
follows from averaging equation (37). We now turn to the asymptotic evaluation of (e). 
Inserting the classical (treelevel) solution (34) into the CallanSymanzik solution (65), and 
making the leading-order replacements i + g R K f ,  and for large 1x1, g~ + gi, we obtain 

If we use the explicit value of g; from (60), then 
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Fwre 6. One-loop gams in field theoq 

Figure 7. One-lwp diagrams in field theory 11. 

So the tree-level expression consists of the expected linear term, which must be present if 
the boundary conditions are to be satisfied, together with a stretched exponential component. 

4.1. One-loop contributions 

According to our earlier arguments we expect the next order contributions to (4) (in field 
theory I) to contain a one-loop embedded somewhere in the tree diagram. The diagrams 
corresponding to this prescription are shown in figure 6. However, we have shown that 
we may translate these diagrams into field theory I1 by replacing response functions by 
propagators. This is convenient as we have analytic expressions for the Green functions in 
the second field theory (at least asymptotically), and so performing calculations becomes 
easier. The equivalent diagrams for field theory I1 are shown in figure 7 .  Notice that the 
density lines present in the diagrams for field theory I have been absorbed into the vertices 
for field theory II, where a factor of & - $: is present at the source vertex. 

We begin by calculating the third diagram of figure 7 .  At this level of approximation, 
we replace the source (the incoming classical density lines at the rightmost vertex in field 
theory I) by a delta function at the origin, with a weight equal to the area under the classical 
reaction front; in other words: 

This will be valid provided (4) decays much more slowly than the classical reaction front- 
an assumption that will be shown to be justified a posteriori. By integrating the classical 
equations, we also have the relation 

i, (4; - e:) dr' = x1I3j4/3 h[(,iJ)113n'] dx' j (76) 

which is simply saying that, classically, the number of particles entering the system is 
the same as the number being annihilated at the reaction front. This relationship is also 
hue non-classically, if we average over the noise. After we have performed the rescaling 

J 
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f' = ( i j ) * l3x' ,  this becomes 

h(2') di' = 1.  (77) s 
So the vertex factor at the source becomes 

i1/374/3h(i) -, xI/3J4/3 h(ff)dff  ~ ( f )  = i V 3 7 4 / 3 , 3 ( 3 .  (78) 

The evaluation of the diagram is presented in appendix B, where it is shown that part of 
the result cancels off the (divergent) diagram shown in figure 7(b). The net result of these 
two diagrams is then 

(S 1 

-(iJ)-12-l-dn-(dtl)/2(i - d ) r  - (79) (d11)X-d-3' 
We may now insert this into the Callan-Symanzik solution (65), and use the results for the 
running currentlcoupling (68)/(69), and for the coupling fixed point (60). This leads to the 
oneloop density correction 

which justifies the use of the delta function approximation for the source. The one remaining 
diagram in figure 7 consists entirely of 6 propagators, and so asymptotically we expect an 
exponential dependence which we neglect in comparison with the power law. So to this 
level of accuracy, we have 

Using the relation (40) it is also straightforward to calculate the form of the reaction front 
profile: 

y 1 . 2  (47=)7112 (d + 112 lX  I (7d-5)/IZe- $ (4na)'/2Jln lz[(d+l)/2 

91 D 
R = A(& - $') = 0.37875 

where only the leading terms generated by the differentiation of each of the component 
parts of (81) have been retained. 

Finally. we consider the cancellation of divergences at one-loop which, as we mentioned 
earlier, can most easily be seen in the formalism of field theory I. We expect divergent 
contributions from the one-loop diagrams (u)<d) in figure 6, in the limit where the position 
of the loop's left vertex tends towards that of the right vertex. In this limit, where no 
insertions are possible into the response functions, it is appropriate to replace the loop of 
the q5 response functions with one of the + response functions. Evaluating this loop gives 
the result 1/2& and the diagrams become as shown in figure 8. However, if we consider 
the corrections to the tree level due to subleading terms in gO(gR) (from equation (61)), 
we have the same diagrams but with opposite signs, which exactly cancel the one-loop 
divergences. 
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F i w e  8. Dlvergences at one-loop. The factor underneath each diagram is 

,--. 

,--. , .  
v -8 etc. 

Figure 9. A sample of the two-loop diagrams for (61). 

4.1.1. Two loops. Whilst we have not calculated in full the contributions to the density 
from the two-loop diagrams, a remark concerning their general nature, and of the nature of 
our perturbation expansion, is in order. A sample of these two-loop diagrams is shown in 
figure 9. 

The easiest diagrams to evaluate are the first and second of those in figure 9, for which 
it is easy to check that they have the form 

Hence the perturbative expansion for the power-law contributions to (4 )  would appear to 
have the form: 

Consequently, we see that the condition for our field theory to be valid is that the 
dimensionless parameter 7Ixld+' be > 1. It should also be noted that subleading power laws 
from the loop integrals will be smaller than their leading term by factors of 

4.2. d 2 2 

At the upper critical dimension for the system, in this case d = 2, we expect logarithmic 
corrections to the d > 2 results, owing to the presence of the marginally irrelevant parameter 
1. The CallanSymanzik solution (65) is still valid, although with a different coupling, 
which we calculate by taking E -+ 0 in (59). This gives the running coupling 
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The behaviour of the running current is as previously calculated. Using the asymptotic form 
gx  - 4n / in (~x) ,  we obtain 

(86) 
where higher-order corrections will be only O[(lu Ixl)-’] smaller, so the asymptotic regime 
will be accordingly hard to reach. Finally, for the reaction front, we have 

(87) 
For dimensions higher than the critical dimension, the expressions from the evaluation 

of the Feynman diagrams are used directly without being inserted into the CallanSymanzik 
solution. This gives us the results, valid ford =- 2, and in the regime (J2h/D3)1~ld+4 >> 1: 

5. Interface fluctuations 

We now turn to the related problem of the nature of fluctuations in position of the reaction 
front. This is similar to the question of the fluctuations of an interface in the dynamical 
Ising model, as described by the time-dependent Landau-Ginzburg (TDLG) equation with 
noise (for example in model A, see [25]). This equation may be mapped to a path integral 
for the field Q, with the introduction of response fields 6, using the Martin-Siggia-Rose 
formalism: 

(90) DQ D6e-.Idrdd-’),dt[~~~+r(V20+v,’(~)))+ir~2~ / 
where the last term in the action results from averaging over the noise. Solving the m L G  
equation in the absence of noise gives us the classical profile aC, and on physical grounds 
we expect the full functional form of Q to be Qc(x - f ( y .  t ) )  % a&) - f (y, t)Q:(x). 
The idea now is to substitute this into the action and to expand the response fields in terms 
of  some complete set of eigenfunctions Yn(x): 

6 ( x ,  Y. t )  = A&(Y, O’k(x )  (91) 
n 

where the { A n }  are normalizing constants. This set is chosen such that when the x 
dependence is integrated out of the action, it leaves behind an unambiguous equation for 
f(y,  t ) .  obtained by integrating over the new response fields f(y, t )  in the path integral. For 
the king case, f ( y ,  t )  can be shown to satisfy a noisy diffusion equation, whose solution 
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implies that fluctuations delocalize the interface for d < 3. A similar result for reaction 
fronts would have dramatic consequences. 

Returning to the reaction-diffusion system, we expect the functional forms for the fields 
in our geomeej to be $(x - fl(y. 2 ) )  and @(x - f d y ,  t ) ) ,  by analogy with the king case. 
Considering first the situation where we neglect noise in the system, we expand the above 
functional forms, giving 

(92) 

(93) 

Hence a = iJ(f1-  fi) and b = Jx - :.f(fi + fi) at x = L, and a = -7x + $j(f, + f2) 

and 6 = 4j(f2 - f1) at x = -L. In the absence of noise a and 6 represent the (positive) 
particle densities, so we must have f i  = fz. 

However, if we include the noise term then this argument is invalid, and we proceed, 
as in the Ising case, by inserting the expanded functional forms for 4 and into the action 
for field theory I, giving 

S = 
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4 = 4(x) - fXy, t )@'(x)  =) 4 = + 7 l X l  7 f j f 2  (x = *L) 

p = @(x) - fi(y,  W ' ( x )  * p = -4Jx + p f l .  

d.X dd-'y dt12&4:[-j2 + V : f d  + 2x@c*3fi - fdl 

+2${*3-j1 + v:flll+ i t @  - $%4 - $31 (94) 
where we have made the approximation 4 + bC, and then used the classical equations 
to simplify the expression. Here y are the coordinates for directions perpendicular to the 
applied currents. In our case it is now appropriate to Fourier expand the $ and 4 fields, 
i,e. 

5 =CS,(Y,OW) 6 = C ~ ( y , r ) e , ( x )  (95) 
n " 

where 0, = sin(nirx/L) for n 
Inserting this into the noise term and performing the x integration, we have 

0, 8, = 1 for n = 0, and 0, = cos(nnx/L) for n < 0. 

where X,, is a symmetric matrix which we now diagonalize. Using tn = DnmFm, but such 
that 6 = we rewrite (96) as 

where A is a diagonal, and D a diagonalizing, matrix. Bearing in mind the symmetries of 
the classical solutions, we can perform the x integration within the action to, arrive at the 
path integral: 

with 
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Integrating over io and f1 gives the equation 

-fi i- V?fIi- rl = o  (100) 

(101) 

where q is a (possibly imaginary) noise variable, with a Gaussian distribution 
p(?)  e-(v2C~/hlMl~ 

If we also diagonalize the noise term involving the 6 fields, then the relevant paa of the 
action is transformed to 

where g = fl - f', and the equation for f i  (100) has been added into the action. The 
{W,,) are coefficients generated by writing 6,, in terms of (E",. Finally, performing the 
integrations over gn and g, we find equations for g which can only be mutually consistent 
for different n if g = 0, or in other words, if fi = f2 = f .  From equation (96) we see that 
Am - fi", and so , 

-f + v:f + q = 0 

p( i l )  - e-(consrm)L2i$ 

(103) 

(104) 

where q is a Gaussian noise variable with probability distribution: 

We now proceed to calculate the mean-square fluctuation (f') - (f)'. This can be done in 
a straightforward manner, solving the noisy diffusion equation satisfied by f using a Green 
function method. The results are 

for d = 2 

where the system has physical dimensions LII x Ld;', and A is now the large k  momentum^ 
cut-off. So we expect that interface fluctuations will be unimportant if 

These results can now be applied to the problem of the late-time behaviour of an 
initially homogeneous distribution of A and B particles [26-291, where it has been shown 
that the reactants segregate asymptotically [26, 291. Here we assume that we can access 
the quasistatic time-dependent regime by simply replacing our currents J by their time- 
dependent analogues (this point is discussed further in the next section). In [29] it is 
demonstrated that these time-dependent inward currents (towards the domain interfaces) 
scale as J -, t-(d+2)/4,  where the domains have a characteristic length scale which grows 
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in time as t1/2.  So on the basis of our assumption we can insert the appropriate time 
dependencies into (IO6), from where it is easily seen that fluctuations are unimportant for 
large enough f, in dimensions where segregation occurs (d c 4). 

M Howard and J Cardy 

6. Discussion 

The main results of our earlier calculations are expansions for the asymptotic behaviour 
of the density and reaction front profiles for dimensions above, below, and equal to 
the critical dimension. We now compare our analytic results with the available data 
from recent numerical simulations [6, 10, 15, 17, 181. Note that in all of these 
papers except [15], the initial conditions are those of complete particle segregation- 
so the particle currents at later times are time dependent. The remaining reference 
[15] contains the results of simulations in the steady state. As we mentioned in the 
introduction, the calculations of this paper can, in principle, be redone for the time 
dependent case. However, simple one-loop considerations for ($Iz) indicate that the 
dominant contributions to the integrals originate from large times. At these times the 
reaction front is formed quasistaticaily, and so we expect to be able to relate to the 
steady-state case by making the correspondence J - t-l/’ [IS, 291 (but see below for 
occasions where this breaks down). Data for d = 2 in the timedependent situation is 
presented in [6, IO], although in [6] there is insufficient information to extract the asymptotic 
behaviour of the reaction front. Further simulations for d = 2 and also for d = 1,3 
are given in [IS], where evidence for (5)-their proposed scaling form of R is given. 
The reaction front profile is seen to exhibit good scaling collapse close to its centre for 
d = 1,2 ,3  but again no information is available for the asymptotics addressed in this 
paper. 

Turning now to the ID case, the simulations in 117, IS] were performed using an 
infinite reaction rate constant, i.e. if two particles of different species either crossed or 
occupied the same lattice site, they immediately annihilated. With initial conditions of 
complete particle segregation, this resulted in total separation of the two species at all 
later times. Consequently, the reaction front profile was determined by the fluctuations 
in position of a delta-function like reaction front. Our results are for finite reaction 
rates, and are dominced by density fluctuations which propagate out from the reaction 
front centre to positions far away, a process which cannot occur in the ID simulations 
mentioned above. We believe this to be the reason for the discrepancy between 
our analytic calculations and the numerical results. For example, the ID simulations 
of Cornell produce evidence for a Gaussian reaction front profile, most notably in 
figure 8 of [NI, in which logR is plotted against ( X / X ( ~ ’ ) ~ ,  where X@) is the width 
of the reaction product profile C = jR(x , t )dr ,  as measured by its second spatial 
moment. The resulting straight line indicates that the Gaussian profile is maintained 
well into the asymptotic region (i.e. at least as far as ( X / X ( ’ ) ) ~  ;5: 30)-in exactly the 
region where, in our model, we would expect our asymptotic expansion to begin to 
apply. 

In addition, controversy still exists over the spatial moments of the reaction front 
profile-Araujo er al [17] and Cornell [lS] disagree over the presence of multiscaling. In 
fact, our calculations suggest that multiscaling does indeed occur for high enough moments 
in the time-dependent version of our model, starting from completely segregated initial 
conditions. For the steady-state situation, the existence of the asymptotic power laws found 
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above implies that the moments 

do not exist for q f i  + 1. However, in the time-dependent case, these moments must exist 
due to the presence of a diffusive cut-off at XD - t1i2 [30]. Therefore, for the calculation of 
the spatial moments x(q )  (for large enough q). we cannot relate the steady-state case to the 
time-dependent case by simply applying the scaling substitution J - f-L/z.  We can make 
these remarks more quantitative by performing the calculation of the spatial moments in 
the timedependent situation. Separate arguments must be applied for d < 2, when our RG 
arguments imply that the steady-state profile has a scaling fonn (82); and for d > 2, when 
(89) shows that the fluctuation-induced power-law tails do not scale. For d < 2, we have: 

where ff and B are defined in the usual way [I, 291. Here F ( y )  is a function which provides 
a cut-off at y - 0(1), but whose inclusion does not affect the calculation of moments which 
are finite even in the absence of a cut-off. For q < f i  + 1, where the 4th moment of S 
is finite (even without a cut-off), we can therefore neglect the effects of F .  However, for 
q > p + 1, the qth moment is infinite without the cut-off, so the integral will now be 
dominated by the region (.x/t'/') - O(I), where the asymptotic result, S - (x/t")-w-2 
may be used. These considerations lead to the result .&)(I) - t u g ,  where (neglecting any 
logarithmic corrections for q = f i  + 1): 

I f f  for q < f i + l  

Hence we have a cusp at q = f i  + 1, above which olq tends towards f for large q. Note 
that this value of is specific to a diffusive cut-off of the form F(x/r'i2). For d = 2 we 
also expect logarithmic corrections to the above power laws. 

For d > 2, we must carry out a slightly different calculation, as although the classical 
(treelevel) reaction front obeys scaling, equation (89) reveals that the one-loop power law 
correction does not. However, for moments which exist without a cut-off, it tums out that 
the classical terms still give the dominant contribution in the scaling limit. For these terms 
we have, in the steady-state case, 
W m 

lxlqRc(x,A, J)dx - A'/3J4/3  ] x ~ ~ S ~ [ ( ~ J ) ~ ~ ~ X ] ~ X  -A-'?/3J'-q/3. (110) 1, L 
However, for the non-scaling power law we must consider 

~~ 

where we have imposed a lower cut-off in the integral derived from the expansion parameter 
of the d > 2 asymptotic series (89). Comparing the J dependence of the two results above, 
we see that the first of these will dominate in the scaling limit J + 0. Substituting J - t-1'2 
and normalizing, we end up with 0 1 ~  = CY = i, for q < d + 4. For the higher moments 
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(q z d + 4) we need to introduce the cut-off function F ,  so the integral will be dominated 
by the region ( ~ / r ' / ~ )  - 0(1), where we can use the asymptotic power law from (89): 
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Consequently, we have the result x(q) - Pq, where (neglecting logarithmic corrections for 
q = d + 4 ) :  

In this case we have a discontinuity at q = d + 4, a result of the power-law term being 
unimportant for q 4 d + 4, but dominant for q > d + 4. Once again we stress that the 
limiting behaviour cyq + 4 as q + 00 is dependent on the diffusive form of the cut-off. 

Thus, we predict the existence of multiscaling in the time-dependent case in qualitative 
agreement with Araujo et al, even though we are considering a different model. In general, 
power-law tails in the steady-state reaction front profiles should always lead to dynamic 
multiscaling, whatever their origin. These arguments are similar to those of Comell et a1 
1301, who find evidence for multiscaling in the reaction nA+mB + 0 with (n, m) # (1, 1). 
However, in that case the solutions of the mean-field rate equations already give power laws, 
even without the addition of fluctuation effects. 

Finally, we conclude that the available simulations are not directly applicable to our 
calculations of asymptotic power laws and multiscaling. However, if the asymptotics could 
be reached in a model with a finite reaction rate, our results should be amenable to numerical 
tests. These might be easiest in ID where the power-law tail should be most pronounced. 

Note added in prooJ It has been poinred out by Comell and Droz 1311 that our choice of boundary conditions, 
with stochastic pmicle injection at a rate R on the system boundaries, leads to an extra source of noise. Explicit 
inclusion of this shot noise in the calculation would came the fluctuations in the difference between the total 
number of A and B panicles to grow without limit. However, in our calculation we have only considered noise 
arising from the classical reaction front, and hwe neaected the noise from the bounday canditions, which we 
believe to be unphysical. 
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Appendix A. Derivation of the Green function G(5,5', LA, Z) 

In this appendix we find a solution to (53) in the region f' z 0, and accurate for large \?I 
i.e. when 1x1 >> (iJ)-ll3): 

aAi[-2+1?+?] when X < 0 

6Ai[f + Li + SI "' when f > f'. 
G(2,  X'. i ~ ,  S )  = pAi[X +ii + 31 + yBi[i + + SI when 0 < 2 < f' (Al) 
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Considering the boundary conditions at i’ (continuity in G and a discontinuity in its 
derivative), we have 

j3Ai(X’ + ii + S) + yBi(.? + /;1+ S) = &Ai(?’ + i: + S) ,642) 
pAi’(X’ +kF + F) + yBi‘(X’ + i: + 5) - 8Ai‘(X’ + if + 3) = 1 . (A31 
These equations can be solved for y with the result that y = xAi(X’ + ii + 5). The final 
boundary condition (G -+ 0 as F-+ -a) will (in principle) give a further relation between 
j3 and y ,  as well as specifying cr. But to use this condition we need to know the behaviour 
of G in regions near 0, where our asymptotic approximation breaks down. Consequently 
we must rely on numerical solutions, which reveal that for our purposes we may neglect 
the j3Ai term in (AZ). Solving for 8, we obtain 

. .  
nAi(X’ + + S)Bi(X +if + 5) for 0 << X < 2‘ 

G(X,X’, k,, s) = (-44) 
- 2 -  { nBi(X’ + i: + S)Ai(X +if + 5) ~ for X > X’ >> 0. 

We can now use the asymptotic form of the Airy function [23] to simplify these expressions 
further: 

Hence, for 0 << X < X‘, 
G = $(‘J + + r)-1/4(X + + 5)-l/4e-i[(~’+q+i)3n-(j+~:+j)3n] (A6) 
with a similar expression for X > X’ >> 0. For 2 x X’ >> 0, we may expand the terms 
inside the exponential, to obtain 

(-47) 
-2  - ln,<-i,l, G,,J(X, X‘, iL, 5) = $(ij)d/3(X + ,&: + 5)-I/Ze-(j+K1+s) 

Appendix B. Evaluation of one-loop diagrams 

The loop contained in the diagram in figure 7(c) is given  by^ the integral 
e-(e+iWa~?rl e-(%-i?)’!21?:l e-(f‘+iT+W’%’-?r~ 

4 ( i i  + i5)1/2 4 ( q  - iS)’/Z 4(f‘ + i; + $1/2 

(B1) 

where the prefactor of ‘2’ counts the number of possible diagram configurations, and the s 
integration is along the real axis. In the integral we have used the form of the propagator 
for the @ field valid for Z;, Xl, i’ >> 0, and 2:, 2; Z X’, the region from which, we expect 
the dominant contribution (as here the 6 propagator falls off only as a power law). The Xj’ 
and 2; integrations are elementary, giving 

dd-’kL d i  

s 2x-l/3 j 2 / 3  (xj)d/3 

e-(E’+q-b)l/9 1j,-q 

4(3  + 1 2  J. - .- I 2 
X (2X1’)(2;)  dq&; 

(27dd 

However, we notice that the leading 2’ part of the integral is, in fact, a divergent power law. 
Fuahermore, this divergence cannot be cancelled by the renormalization of the theory, as any 
such cancellation would have to arise from coupling constant renormalization at the tree level 
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(using (61)). As the renormalized tree-level result is still an exponential, cancellation with 
a power law cannot occur. Consequently, we must find another mechanism for the removal 
of the divergence, and this is provided by its cancellation with the divergent loop shown in 
figure 7(b ) .  Turning now to the next ,to leading i' term in the above integral, we have 
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-h-W j p ( x  j)d/3- e-(i;ti:)lnf'e-(i; -ip?' 
420 ' S  

This can be rewritten as 

i.e. a constant times the derivative of the l/r propagator loop integral. Rewriting the @ 
propagators entirely in momentum space, and performing a contour integration for 5,  we 
end up with 

This integral may be done exactly using some standard results from [24], with the result 

(B6) 1-113 ~ ? 3 ( ~ J ~ d / 3 ~ - l - d ~ - ( d t ~ ) / ~ ( ~  - d ) r  

To evaluate the contribution to @) we now need to include the left most vertex and prop- 
agator: 

x x e  d,? 037) 
-,-d-2---1/2 -zlP]i-s[ _ ( ~ j ) d / 3 2 - 2 - d n - ( d + 1 ) 1 2 ( l  - d ) r  

giving the leading-order result 
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